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Abstract: We use the volume integral equation formulation to consider frequency-domain
electromagnetic scattering of a damped inhomogeneous plane wave by a particle immersed in an
absorbing medium. We show that if absorption in the host medium is sufficiently weak and the
particle size parameter is sufficiently small, then (i) the resulting formalism (including the far-field
and radiative-transfer regimes) is largely the same as in the case of a nonabsorbing host medium,
and (ii) one can bypass explicit use of sophisticated general solvers of the Maxwell equations
applicable to inhomogeneous-wave illumination. These results offer dramatic simplifications for
solving the scattering problem in a wide range of practical applications involving absorbing host
media.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Starting with the landmark volume by Stratton published in 1941 [1], electromagnetic scattering
by particles embedded in an absorbing host medium has been the subject of great practical
significance (see [2–20] and references therein). The majority of publications have dealt with the
case of an impressed incident field modeled as a homogeneous (uniform) plane electromagnetic
wave in which the planes of constant phase are parallel to the planes of constant amplitude. Yet in
many applications the incident plane wave can be inhomogeneous. A typical example is the plane
wave transmitted by a plane interface into an absorbing medium hosting particles [1,21,22]. The
general theory describing this scenario becomes exceedingly involved and often impracticable.
Yet it can be shown that if the host medium is weakly absorbing (which is the case in the majority
of practical applications) then the theory can be simplified dramatically and essentially reduced
to that developed for the case of a homogeneous incident wave. We demonstrate that in the rest
of this paper.

2. Scattering problem

Our derivation is based on the general volume integral equation formulation (VIEF) of frequency-
domain electromagnetic scattering for nonmagnetic materials (see [23–26] and references therein).
We imply the monochromatic exp(−iωt) dependence of all fields, where t is time, ω is the angular
frequency, and i = (−1)1/2. The scattering problem is shown schematically in Fig. 1, in which a
fixed finite object is embedded in an infinite medium that is assumed to be homogeneous, linear,
isotropic, and in general absorbing. The object occupies an “interior” region VINT filled with
isotropic, linear, and possibly inhomogeneous materials and can include edges, corners, and
intersecting internal interfaces [25]. (The assumption of isotropic materials is not essential;
it is made for simplicity and can be relaxed.) Point O centered at the object serves as the
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common origin of all position vectors. For further use we denote as R the radius of the smallest
circumscribing sphere of the object centered at O.

Fig. 1. Scattering problem. The real part of the wave vector k′ is normal to surfaces of
constant phase and generally is not parallel to the imaginary part of the wave vector k′′. In
the far zone of the object, the scattered field becomes an outgoing transverse spherical wave.

Let us assume that the object is subjected to an impressed incident field Einc(r) in the form of
a free-space solution of the macroscopic Maxwell equations. A fundamental result of the VIEF
[26] is that the scattered field everywhere in space is given by

Esca(r) =
∫

VINT

d3r′
↔

G(r, r′)·
∫

VINT

d3r′′
↔

T(r′, r′′)·Einc(r′′), (1)

where
↔

G(r, r′) is the free-space dyadic Green’s function and
↔

T(r, r′) is the so-called transition
dyadic. The latter is independent of the incident field, serves as a unique and universal “scattering
ID” of the object in a given host medium, and can be found by solving the following integral
equation of the Lippmann–Schwinger type:

↔

T(r, r′) = U(r)δ(r − r′)
↔

I + U(r)
∫

VINT

d3r′′
↔

G(r, r′′)·
↔

T(r′′, r′). (2)

Here,

U(r) ∆=


0, r ∈ R3\VINT,

ω2ε2(r)µ0 − k21, r ∈ VINT
(3)

is the so-called potential function; δ(r) is the three-dimensional delta function;
↔

I is the identity
(or unit) dyadic; ε1 and ε2(r) are the complex permittivities of the host medium and the object,
respectively; µ0 is the magnetic permeability of a vacuum;

k1 = k′1 + ik
′′
1
∆
= ω
√
ε1µ0 (4)

is the (generally complex) wave number in the host medium; R3 is the entire three-dimensional
space; and we express

ε1 = ε
′
1 + iε

′′
1 = ε

′
1(1 + iτ), (5)

where the parameter τ = ε′′1 /ε
′
1 ≥ 0 quantifies the strength of absorption in the host medium.

We have also assumed that ε′1>0 since otherwise the absorption cannot be small (see below).
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If the incident and scattered electric fields are known everywhere in space then the corresponding
magnetic fields Hinc(r) and Hsca(r) everywhere in space can be found from the frequency-domain
Maxwell curl equations.

Let us assume that in general, the impressed incident field is a damped inhomogeneous plane
electromagnetic wave given by [21,22]

Einc(r) = E0exp(ik·r), (6)

Hinc(r) = H0exp(ik·r), (7)

where
k = k′ + ik′′ (8)

is the complex wave vector in the host medium such that k′>0 and k′′ ≥ 0. Obviously, the planes
of equal phase are normal to k′ (Fig. 1), while the planes of constant amplitude are normal to
k′′. The amplitudes E0 and H0 specify the incident field at the origin O of the object-centered
reference frame (Fig. 1).
The general properties of the plane wave are the following [1,21,22,24]:

k·E0 = k·H0 = 0, (9)

H0 = (ωµ0)
−1k × E0, (10)

k·k = k21 = ω
2ε1µ0. (11)

The dispersion Eq. (11) implies that

k′2 − k′′2 = ω2ε′1µ0, (12)

k′·k′′ = k′k′′ cos ζ =
1
2
ω2ε′1µ0τ, (13)

where ζ is the angle between the vectors k′ and k′′. The non-negativity of the right-hand side
of Eq. (13) implies that 0 ≤ ζ ≤ π/2. If ζ = 0 then k′ ‖ k′′, and the plane wave (6)–(8) is
homogeneous. If ζ = π/2 then the host medium is nonabsorbing, but the wave is inhomogeneous
(e.g., an evanescent one).

The Maxwell equations alone do not constrain the direction of k′′ (and hence the angle ζ)
for a given k′, so it must be found from appropriate boundary conditions. For example, if the
inhomogeneous wave is generated by refraction of a homogeneous wave in a nonabsorbing
medium through a plane interface into an absorbing host then k′′ is always normal to the interface
[1,21,22].

Assuming that ζ is known, it is easily verified that the solution of the system of Eqs. (12)–(13)
is given by (cf. [21])

k′ = ω
√
ε′1µ0


1
2


√
1 +

(
τ

cos ζ

)2
+ 1



1/2

, (14)

k′′ = ω
√
ε′1µ0


1
2


√
1 +

(
τ

cos ζ

)2
− 1



1/2

. (15)

These formulas conclude the generic outline of the scattering problem relevant to the case of an
inhomogeneous plane incident wave.
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3. Weakly inhomogeneous host medium

Let us further assume that the host medium is weakly absorbing (i.e., τ � 1), and that ζ is not
too close to π/2 so that

τ/cos ζ � 1. (16)
The actual requisite smallness of τ/cos ζ depends on the specific circumstance, but values like
10−2 or smaller could be mentioned as representing useful applications. Then

k′ ≈ ω
√
ε′1µ0 ≈ k′1, (17)

k′′ ≈ k′
τ

2 cos ζ
, k′′ � k′. (18)

Equations (17) and (18) are quite consequential. Indeed, we can conclude that to high accuracy,

k′⊥E0, k′⊥H0, H0 = (ωµ0)
−1k′ × E0. (19)

In other words, the complex electric and magnetic field vectors are parallel to the planes of
constant phase and are mutually perpendicular. It is easily seen that Eq. (19) implies that the
instantaneous real electric and magnetic field vectors are normal to each other:

H inc(r, t)⊥E inc(r, t). (20)

Furthermore, k′ defines the direction of the time-averaged Poynting vector:

Sinc(r) =
1
2

Re[Einc(r) ×Hinc(r)] =
1

2ωµ0
exp(−2k′′·r)|E0 |

2k′. (21)

Notably, the relations (19) and (20) are characteristic traits of a (homogeneous) plane wave
propagating in a nonabsorbing medium.
The scattered field in the far zone of the particle is an outgoing spherical wave [26]:

Esca(r) = E1(r̂)exp(ik1r), (22)

Hsca(r) = H1(r̂)exp(ik1r), (23)
where r̂ = r/r is a unit vector in the scattering direction. This wave is always homogeneous in
the sense of surfaces of constant amplitude coinciding with surfaces of constant phase. Again, it
is straightforward to show (cf. Section 3.2 of [24]) that in the limit τ � 1, we have

r̂⊥E1(r̂), r̂⊥H1(r̂), H1(r̂) = (ωµ0)−1k′1 r̂ × E1, (24)

H sca(r, t)⊥Esca(r, t), (25)

Ssca(r) =
1
2

Re[Esca(r) ×Hsca(r)] =
1

2ωµ0
exp(−2k′′1 r)|E1(r̂)|2k′1 r̂. (26)

By virtue of being the same as in the case of a nonabsorbing host medium, Eqs. (19), (20), (24),
and (25) justify the introduction of the conventional transverse scattering dyadic

↔

A(r̂, k̂′) (and
hence the 2 × 2 amplitude scattering matrix) fully describing the scattered field in the far zone
[26]:

Esca(r) ≈
r→∞

exp(ik1r)
r

↔

A(r̂, k̂′)·E0, (27)

where
↔

A(r̂, k̂′) =
1
4π
(
↔

I − r̂ ⊗ r̂)·
∫

VINT

d3r′exp( − ik1r̂·r′)

×

∫
VINT

d3r′′
↔

T(r′, r′′)·(
↔

I − k̂′ ⊗ k̂′) exp(ik′·r′′) exp(−k′′·r′′)
(28)

and ⊗ is the dyadic product sign. Furthermore, Eqs. (19)–(21) and (24)–(26) allow one to give a
meaningful definition of the Stokes parameters of the incident and scattered waves in terms of the
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electric-field amplitudes E0 and E1 only [24,27]. This obviously paves the way to the standard
(and self-contained) description of far-field scattering (Fig. 1) and radiative transfer in terms of
the extinction and phase matrices [13,28].
Let us further assume that we can solve the above-formulated scattering problem rigorously

and evaluate the scattered field everywhere in space for an arbitrary homogeneous plane incident
wave specified by E0, k′, and k̂′ = k′/k′, with k′′ ‖ k′ and k′′ being the non-negative solution of
Eq. (12). For example, in the case of a spherically symmetric scattering object this can be done
quite efficiently using the classical Lorenz–Mie theory [1,18,29]. This rigorous scattered field
will be denoted as Esca

hom(r). Using Eq. (1), this field can be expressed as

Esca
hom(r) =

∫
VINT

d3r′
↔

G(r, r′)·
∫

VINT

d3r′′
↔

T(r′, r′′)·E0 exp(ik′ k̂′·r′′)exp( − k′′ k̂′·r′′). (29)

We also consider an arbitrary inhomogeneous plane incident wave (6)–(8) and denote the
corresponding solution of the scattering problem as Esca(r).Then

Esca(r) =
∫

VINT

d3r′
↔

G(r, r′)·
∫

VINT

d3r′′
↔

T(r′, r′′)·E0exp(ik′ k̂′·r′′)exp( − k′′ k̂′′·r′′), (30)

where k̂′′ = k′′/k′′. Owing to Eq. (19), we can choose a homogeneous wave with the same E0
and k̂′, but generally different k′, k′′, and k̂′′.

Finally, we assume that in either case the absorption size parameter of the scattering object is
very small:

k′′R � 1 (31)

in both Eq. (29) and Eq. (30). For example, one may require that k′′R <
∼ 0.01. Then for all

r′′ ∈ VINT, exp( − k′′ k̂′·r′′) ≈ 1 in Eq. (29) and exp( − k′′ k̂′′·r′′) ≈ 1 in Eq. (30). Moreover, in
these two equations k′ can be replaced by k′1 owing to

(k′ − k′1)R =
k′′

k′ + k′1
(k′′R) � 1, (32)

where we have used Eqs. (12), (18), and (31). As a consequence, we have to high precision (e.g.,
a few percent or better):

Esca(r) ≈ Esca
hom(r) (33)

and
↔

A(r̂, k̂′) ≈
↔

Ahom(r̂, k̂′), (34)

where
↔

Ahom(r̂, k̂′) is the amplitude scattering matrix computed for the homogeneous plane
incident wave. The same, of course, is true of the corresponding amplitude scattering matrices as
well as extinction and phase matrices.

4. Summary and discussion

In summary, we have shown that if absorption in the host medium is sufficiently weak, Eq. (16),
then the traditional far-field and, by implication, radiative transfer formalisms remain virtually
the same even if the incident field is an inhomogeneous plane wave. Furthermore, Eqs. (33) and
(34) express the solution of the scattering problem for an inhomogeneous plane incident wave in
terms of that for a homogeneous wave provided that the inequality (31) holds. As such, they
represent a substantial simplification potentially applicable in many practical situations.

For example, the absorption in such ubiquitous bulk substances as water and water ice is weak
enough at infrared wavelengths shorter than 2 µm [30,31] to justify the inequality (16) in many
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cases. If furthermore the scattering size parameter k′R of a particle embedded in water or ice
is also sufficiently small then, depending on the actual smallness of k′′/k′, the inequality (31)
can become justified as well. This opens the possibility of using relatively simple and highly
efficient solvers of the Maxwell equations developed for the case of a homogeneous plane incident
wave (e.g., [18,29]) in place of more involved generalizations of the Lorenz–Mie theory [32,33]
or universal solvers of the Maxwell equations such as, e.g., the VIEF-based discrete dipole
approximation [34,35]. At longer wavelengths, absorption by water and water ice becomes so
strong that it can be expected to annihilate many (if not all) measurable manifestations of light
scattering (and especially of multiple scattering) in the first place [36].
The approximation (31) is in some sense analogous to the Rayleigh approximation based on

the assumption that the incident field is nearly constant over the interior of the scattering object
[37–41]. However, the range of practical applicability of the former can be much wider. Consider,
for example, an object with the scattering size parameter k′R = 4π and the absorption size
parameter k′′R = 0.01. Obviously, the real and imaginary parts of the complex-exponential factor
exp(ik′ k̂′·r′′) in Eq. (30) can oscillate four times between –1 and+ 1 along the largest dimension
of the scattering object, thereby rendering the Rayleigh approximation utterly inapplicable. Yet
the real-valued absorption exponential factor exp( − k′′ k̂′′·r′′) deviates by only ±0.01 from its
value unity at the origin (Fig. 1).
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